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Abstract-A stable and accurate closed method for the solution of the differential equations describing 
thermal regenerator behaviour is discussed. The approach adopted is related to that proposed by Razelos 
[Wiirme- u. Stoffiibertr. 12, 59-71 (1979)], but employs the trapezoidal rule to provide accuracy and, in 
particular, numerical stability. Details of the new method are described together with its application to a 

large range of the descriptive parameters. 

1. INTRODUCTION 

THE OPERATION of a thermal regenerator can be 

considered to be the continuous, alternate passage of 
hot and cold fluid streams over a solid matrix or 
packing. The length of time for which each fluid flows 
is known as a period. The packing facilitates heat 
transfer between the hot and cold fluids by absorbing 
thermal energy during the hot period and releasing 
some of this stored energy during the cold period, in 

order to warm the cold fluid. At the end of each period 
it is assumed that any remaining fluid in the channels 
of the matrix is expelled before the start of the next 
period in what is known as a reversal period. The 
combination of the hot and cold periods together with 
the reversal periods forms a cycle. After a sufficient 
number of such cycles the regenerator reaches a state 
of dynamic equilibrium, where the chronological 
variation of the fluid and solid temperatures is 
identical over successive cycles. The directions of the 
hot and cold fluid streams defines the mode of 
operation of a regenerator. If both streams flow in the 
same direction the mode is co-current or parallel-flow 
and in opposite directions is counter-current or 
counter-flow. The latter is more common and is 
discussed in greater detail in this paper. 

In 1979 Razelos [l] presented a closed solution to 
the two linear, partial differential equations which 

describe thermal regenerator behaviour [2] : 

In this solution, equation (2) is discretised using 
Euler’s rule. An analytic approach is then used to solve 
the resultant set of ordinary differential equations in 
the independent variable r]. This gives rise to a set of 
simultaneous, linear, algebraic equations. The number 
of linear equations is directly proportional to the 

* To whom correspondence should be addressed 

number of steps required in the discretisation. Euler’s 
rule is the least accurate of the finite-difference 

formulae [3] and, due to stability considerations, can 
only be implemented using a sufficiently small 
steplength. In order to achieve sufficient accuracy, and 

implicitly to avoid the effects of instability, Razelos [I] 
found it was necessary to use a steplength of the order 
0.01 when representing equation (2); consequently the 

solution of up to 1000 linear equations was required. 
This paper discusses a new method which uses the 

trapezoidal rule to discretise equation (2). The 
trapezoidal rule [3] is more accurate than Euler’s and 
has no stability problems when used to replace 
equation (2). This approach not only substantially 
reduces the number of linear equations to be solved 
but also offers a solution to the long regenerator 
problem [4]. A significant advantage of this method 
for cyclic equilibrium calculations is that both the fluid 
and solid temperature distributions can be computed 
for any instant oftime. This is not the case in the closed 
methods of Iliffe [S] and Nahavandi and Weinstein 
[6] where only the solid temperatures are available at 

the beginning and end of the hot and cold periods of 
operation. 

2. THE MATHEMATICAL MODEL 

The differential equations which model regenerator 
behaviour are: 

Built into equations (3) and (4) are the following 
idealisations and assumptions. 

(9 

(ii) 

The effects of the residual fluid in the matrix 
channels during the reversal periods are ignored. 
The thermal conductivity of the fluids and matrix 
is zero in a direction parallel to that of the fluid 
stream. 
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A 

A, 

b 

C 

h 

K, 
L 

m 

M 

N 

P 

R, 
S 

t 

T 

trapezoidal discretisation constant 
heat transfer surface area [m2] 
constants of integration in general 
solution to equation (21) 
trapezoidal discretisation constant 

specific heat of matrix [J kg- ’ K- ‘1 
heat transfer coefficient 
general solution to equation (21) 
length of regenerator [m] 
mass of fluid in regenerator 

channels [kg] 
mass of matrix [kg] 
total number of regenerator segments 
duration of a period [s] 
particular solution to equation (21) 
specific heat of fluid [J kg ’ K - ‘1 

dimensionless [0, l] fluid temperature 
dimensionless [0, l] matrix 
temperature 

W mass flow rate of fluids [kg s- ‘1 

Y distance down the regenerator [ml. 

NOMENCLATURE 

Greek symbols 

uj series in rj for general solution to 

equation (21) 

differentiated clj values 
dimensionless time defined by 

equation (6) 
thermal ratio 

fluid temperature [K] 
inlet fluid temperature as a function 
of time [K] 
maximum value of 4,(e) for 
0 < 0 < P [K] 
minimum value of 4b(ey for 
0 < 0’ $ p’ [K] 
time [Is] 

dimensionless distance defined by 
equation (5) 
reduced length defined by equation (7) 
reduced period defined by 

equation (8) 
matrix temperature [K] 
transformation of T. 

Superscript 
refers to cold period. 

Subscript 
n refers to nth node. 

(iii) 

(iv) 

(v) 

The solid temperature variation in the radial 
direction is not considered. It is assumed that the 

thermal conductivity in the radial direction is 
either infinite, in which case the solid will be 
isothermal in the radial direction, or finite. In the 
latter case a bulk heat transfer coefficient is 
used [ 71. 
The heat transfer coefficient and thermal 
properties of both fluid and solid are regarded as 
temperature independent. 
The mass flow rate of the fluid in each period does 
not vary with time but may be different in the hot 
and cold periods. 

By using the dimensionless parameter introduced 
by Hausen [2]: 

h Ay CC-- 
WSL 

(5) 

and the dimensionless temperatures given by: 

equations (3) and (4) take the form (1) and (2) given in 
Section 1. The values of 5 and 9 at y = L and 0 = P 

are : 

J 

l-+!$ p-m 

i 1 W 

which were named reduced length and reduced period 

respectively by Hausen [2]. The importance of the 
my/WL term in equation (6) is discussed in detail by 
Willmott and Hinchcliffe [S]. 

Any solution to equations (1) and (2) must also take 
into account the following boundary conditions: 

(i) The inlet fluid temperature is predefined as some 
function of time, namely 

to(q) = t(O, V). (9) 

(ii) Distances within a regenerator are measured from 
the fluid entrance in both periods. Further, the 
temperature distribution of the matrix at the end 
of one period is equal to the temperature 
distribution of the matrix at the beginning of the 
opposite period. For counter-current operation 
this results in the reversal conditions: 

T(5, 0) = T’[A’( 1 - (/A), n’] (10) 

T’(<‘, 0) = T[A(l- C’/h’), II]. (11) 

Regenerator effectiveness 

Regenerator effectiveness is measured in terms of 
the thermal ratio qreg which describes the ratio of the 
actual heat transferred during a period to the 
thermodynamically limited maximum obtainable heat 
transfer for that period. This results in the two values 
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of v,,~ shown by Iliffe [5] to be: 

TYi..O)dC+“OA T(T,O)dS] 

When t, = t,(q) the particular solution to equation 
(21) is given by: 

n-1 
R, = exp(ag) 1 [a(1 +b)]“-‘-‘b 

(12) ,=O 

3. ANALYSIS 

Discretising equation (2) employing the trapezoidal 
rule and considering the temperatures of fluid and 
solid at (N + 1) equidistant points or nodes along the 
regenerator yields: 

dT 
“=t,-T, (O<ndN) 
dr? 

(14) 

t”+ 1 = bt,+a(T,+T,+,) (Od n 6 N-l) (15) 
with 

A5 
a=2+85’ 

b = 2-65 
m, @+b)= 1 (16) 

s n-r 

(13) 
X exp(-arl)G&)dg (1 d n 6 N) (26) 

where 

and 

Al=;, t=nAt. (17) 

G,(v) = a s exphN,(rl) dq +b ewh)t,(rl) (27) 

4, = s evhhh)dv (28) 

and the symbol s”-’ indicates (n - r) indefinite 
integrations of the function exp( -ar])G,(q). 

The proofs that equations (23) and (26) satisfy the 
auxiliary equation (22) are given in Appendix I. Given 
the general and particular solutions to equation (21), 
together with equation (20), all the required 
temperatures can be calculated. 

Solution for constant inlet temperatures 
In this case we have t,(q) = 1 and t&‘) = 0 which 

yields: 

The reversal conditions (10) and (11) become: Gb(rl’) = 0, 
(29) 

T,,(O) = Ti-“(II’) (0 6 n 6 N) (18) WV) = (a+b)exp(rl) = (I-a)exp(rl). 

T,,‘(O) = TN_“(n) (0 < n 6 N). (19) The particular solution R, now takes the form: 

The transformation Y is now introduced and RA = 0, R, = exp(q). (30) 

equation (14) is used to give: From equations (20), (23) and (30) we obtain the solid 

Y’. = exp(q)ll;, (0 < n 6 N) (20) temperatures: 

dY 
n = exp(q)t, 

T. = exp(-q)(-l)“A, 

dq 
(0 < n d N) (21) II-1 

+exp[(a-l)q] A,+ C AjO&_j +1 (31) 
which, using equation (15), becomes: j= 1 

d’I‘ 
n = aYY,+aY,_, +b 
dv 

F (1 < n < N). (22) 

Any solution to equation (21) must satisfy this 
auxiliary equation (22). 

Solution of equation (21) 
The general solution to equation (21) (when t, = 0) 

is given by: 

a-1 

K, - (-l)“A,+exp(a~) A,+ 1 Aj~n-j 
j=l I 

(1 < n < N) (23) 

with 

and 

T,’ = exp(-g’)(-1)“Ab 

1 

n-1 

+exp[(a’-l)$] AA+ 1 A;cz&~ 
j=l 

and 

(32) 

T, = exp(-q)A,+l, Td = exp(-$)A;. (33) 

For the gas temperatures equations (21), (23) and (30) 
are used to give: 

t, = a exp[(a - l)~] 

1 
n-1 

X A,+ 1 Aj{Ct-j+(l+b)B,-j} 

1 
+l (34) 

j=l 

t; = a’ exp[(a’- I)$] 

n-1 

x A;+ c A;{a:_j+(l+b’)&j} 1 (35) 
j= 1 

where 

the A, values being constants of integration. Applying equations (31H33) to the reversal 
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conditions (18) and (19) yields 2(N + 1) equations in 
the 2(N + 1) unknowns Aj, A;: 

(-l)“A,+A,+l 

= exp( - lI’)( - l)N-“Ab 

+exp[(a’-l)H’] Ah_,+ 
{ 

N-n-l 

1 A;ah_,_j (37) 
j= 1 I 

(-l)“Ab+A:, 

= l+exp(-II)(-l)N-“A, 

1 

N-n-l 

+exp[(a-l)H] AN-,+ C AjaN_“_j . (38) 
j=l I 

At the hot and cold fluid entrances, the corresponding 
equations are: 

A,, + 1 = exp( - II’)( - l)NAb 

1 

N-l 

+exp[(a’-l)II’] Ah+ 1 A~GI~-~ 
I 

(39) 
j= 1 

Ah = l+exp(-H)(-l)NA, 

i 

N-l 

+exp[(a-l)II] AN+ c AjaN-j 
j=l 1 

(40) 

(-l)NA,+AN+l =exp(-H’)Ab (41) 

(-l)NAb+Ah = l+exp(-II)A,. (42) 

In equations (37t(40) the a,, a: values are calculated at 
r~ = II and q’ = II’, respectively. In the important case 
of the symmetric regenerator, where A = A’ and 
II = H’, it can be shown that (Aj + Ai) is equal to zero 
and the number of equations required is halved. 
Further details concerning the implementation of 
equations (25), (31)-(42) are given in Appendix II. 

Calculation of regenerator effectiveness prep 
Equation (12) is evaluated by the trapezoidal rule 

using equation (43): 

- ;+N&+? ( i= 1 >I (43) 

In the case of constant inlet temperatures Y& can also 
be calculated from the cold exit fluid temperatures 
using equation (44): 

1 
rlreg = E 

s 

rI’ 

r;v(r?‘) dV . WI 
0 

Equation (43) is generally used in preference to 
equation (44) as the temperatures 7;, q at rf = 0 can 
be calculated from the Aj, AJ values directly, the a,, a: 
values being zero. However, when both the A/II and 
A’/II’ ratios become very large a loss of precision is 
associated with equation (43). In this case the exit fluid 
temperature variation is linear and equation (44) 
should be used. 

4. RESULTS 

The results for symmetric, counter-flow 
regenerators with constant inlet temperatures 
reported by Razelos [l] have been computed. Similar 
results were obtained employing much smaller values 
of N, typically l&50 compared with values of 

4wlOOO used in the former work. As an example the 
symmetric case A = 10, II = n is presented in Table 1. 
In this particular case the value of N used was 30. 

Many non-symmetric, counter-flow cases have also 
been computed with a comparable economy in N. The 
cases presented by Nahavandi and Weinstein [6] have 
been computed and the results are given in Table 2. 
This table was produced using values of N between 10 
and 40 to obtain agreement in qreg values of 0.0001. 
The results can be seen to be in good agreement with 
previous work [9]. 

In order to gauge fully the computational 
performance of the present method, a comparison has 
been made with the open scheme of Willmott [lo]. In 
open methods the periodic behaviour of the 
regenerator is emulated directly, the model being 
cycled to equilibrium in the same way that the 
regenerator cycles to equilibrium. In the Willmott 
method, both equations (1) and (2) are integrated 
using the trapezoidal rule and thus the error 
associated with the discretisation of equation (2) is the 
same as in the method discussed here. The open 
method was implemented, using the convergence 
criteria described by Willmott and Burns [ll], by 
fixing the number of distance steps (i.e. N) and 
increasing the number of time steps by 10 until 
successive qreg values differed by less than 0.0001. In 
this way the time taken to compute a converged YJ,, 
value for a given N could be ascertained and compared 
with that required by the closed method for the same 
value of N. 

In Table 3 the relative CPU times taken by the two 
methods to compute the following table of qreg values, 
using different values of N and k, are presented. 

Table 1. Matrix temperatures during the cold period for 
a symmetric, counter-flow regenerator with A = 10, 

II = n, N = 30 

B’ 

5’ 0 44 742 3x14 x 

0 0.2222 0.1013 0.0462 0.0211 0.0096 
1 0.2977 0.2060 0.1365 0.0877 0.0550 
2 0.3793 0.3011 0.2287 0.1675 0.1192 
3 0.4644 0.3919 0.3199 0.2532 0.1949 
4 0.5509 0.4807 0.4098 0.3410 0.2771 
5 0.6375 0.5685 0.4986 0.4293 0.3625 
6 0.7229 0.6549 0.5861 0.5171 0.4491 
7 0.8051 0.7389 0.6716 0.6036 0.5356 
8 0.8808 0.8182 0.7536 0.6875 0.6207 
9 0.9450 0.8889 0.8292 0.7667 0.7023 
10 0.9904 0.9452 0.8938 0.8376 0.7778 
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Table 2. Values of r&s for counter-flow regenerators. The number of nodes is increased by 10 until 
successive estimates of r& differ by less than 0.0001 
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Number of nodes 
Lambertson 

A A’ n l-l’ 10 20 30 40 [91 

1.4 2 2 2 0.4960 0.4960 
2.8 4 4 4 0.6437 0.6437 
5.6 8 8 8 0.7588 0.7589 

11.2 16 16 16 0.8400 0.8404 
1.4 2 1 1 0.5271 0.5271 
2.8 4 2 2 0.7088 0.7087 
5.6 8 4 4 0.8538 0.8536 

11.2 16 8 8 0.9463 0.9458 
0.2 2 2 2 0.5536 0.5535 
0.4 4 4 4 0.7072 0.7070 
0.8 8 8 8 0.8014 0.8011 
1.6 16 16 16 0.8601 0.8597 
0.2 2 1 1 0.6012 0.6010 
0.4 4 2 2 0.8117 0.8112 
0.8 8 4 4 0.9412 0.9401 
1.6 16 8 8 0.9897 0.9880 
1.0 2 2 2 0.5156 0.5156 
2.0 4 4 4 0.6690 0.6689 
4.0 8 8 8 0.7817 0.7816 
8.0 16 16 16 0.8548 0.8547 
1.0 2 1 1 0.5516 0.5516 
2.0 4 2 2 0.7463 0.7462 
4.0 8 4 4 0.8935 0.8930 
8.0 16 8 8 0.9731 0.9720 

0.7590 
0.8404 

0.8536 
0.9457 

0.7070 
0.8010 
0.8596 
0.6010 
0.8111 
0.9399 
0.9877 

0.8546 

0.7462 
0.8929 
0.9718 

0.4959 
0.6437 
0.7590 
0.8405 
0.5271 
0.7087 
0.8535 

0.9456 0.9456 
0.5534 
0.7070 
0.8009 
0.8595 
0.6008 
0.8109 

0.9398 0.9397 
0.9876 0.9874 

0.5156 
0.6690 
0.7817 
0.8546 
0.5515 
0.7461 
0.8928 

0.9717 0.9717 

A= 1,2,..., 10; I-I = 1,2,3; 

A’= k-A; l-I’= k.l-I. 

It can be seen from Table 3 that the time taken by the 
closed method compares favourably with that 
required by the open scheme, especially in the case of 
the symmetric regenerator (k = 1). The improved 
performance of the present method in the case of the 
symmetric regenerator is to be expected as the solution 
of only (N + 1) equations is required. The relative 
decrease in performance of the closed scheme as N 
increases is attributable to the difference in the order of 
the workload in both schemes. In general the 
workload of the present method is proportional to N3 
and in the Willmott scheme is approximately cNP, 
where P is the number of steps required in the 
discretisation of equation (1) and c is the number of 
cycles required to reach equilibrium. Hence, as N 
becomes larger the computational time required by 

Table 3. Relative CPU times, for the open Willmott scheme Table 4. Relative CPU times, for the open Willmott scheme 
and the present method, taken to compute the table of nreg and the present method, taken to compute the table of nres 

valuesA=1,2 ,..., lO;ff=l,2,3 values A = lo, 20,. . ,50; n = 1 

Hill-Willmott (1986) 

A’ l-r’ 
-_=-_=k 

Willmott [lo] 

A n N= 10 N = 20 N = 30 

1 0.13 0.17 0.24 
1.5 0.43 0.79 1.23 
2 0.43 0.78 1.22 

the present method increases more rapidly than in the 
Willmott scheme. As values of N between 10 and 30 
cover most practical applications of the Willmott 
method, Table 3 suggests that the closed scheme 
discussed here is, in general, better suited to cyclic 
equilibrium calculations than the open Willmott 
method. 

As the A/II ratio becomes larger the open scheme 
takes longer to cycle to equilibrium and the usefulness 
of the closed method becomes more apparent. Table 4 
is presented in order to show the superior ability of the 
closed scheme under these circumstances. The 
parameters used in Table 4 are: 

A= 10,20,...,50; l-I= 1; 

A’=k-A; II’= k-l-I. 

As mentioned previously, the present method also 
offers a solution to the problem of the long 

Hill-Wilhnott (1986) 

A’ rr 

A n k 

Wilhnott [lo] 

N= 10 N = 20 N = 30 

1 0.06 0.06 0.09 
1.5 0.12 0.21 0.35 
2 0.11 0.19 0.31 
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Table 5. Matrix temperatures at q = 0 and 4 = fJ during the hot period for symmetric, counter-flow 
regenerators with IT = 0.1, N = 40 

5/A - 

0.0 0.9897 0.9958 0.9979 0.9907 0.9962 0.9981 
0.1 0.8917 0.8966 0.8982 0.8927 0.8970 0.8984 
0.2 0.7936 0.7974 0.7986 0.7946 0.7978 0.7988 
0.3 0.6956 0.6982 0.6990 0.6966 0.6986 0.6992 
0.4 0.5976 0.5990 0.5995 0.5985 0.5994 0.5997 
0.5 0.4995 0.4998 0.4999 0.5005 0.5002 0.5001 
0.6 0.4015 0.4006 0.4003 0.4024 0.4010 0.4005 
0.7 0.3034 0.3014 0.3008 0.3044 0.3018 0.3010 
0.8 0.2054 0.2022 0.2012 0.2064 0.2026 0.2014 
0.9 0.1073 0.1030 0.1016 0.1083 0.1034 0.1018 
1.0 0.0093 0.0038 0.0019 0.0103 0.0042 0.0021 

‘, = rl 

A=100 A = 250 A=500 A=100 A = 250 A=500 

Table 6. Fluid temperatures at 1 = 0 and 11 = fI during the hot period for symmetric, counter-flow 
regenerators with fI = 0.1, N = 40 

,, = 0 q=n 

i’lA A = 100 A = 250 A=500 A= 100 A = 250 A=500 

0.0 l.OQOO 1 .oooo l.OOQO 1.0000 1.0000 1.0000 
0.1 0.9015 0.9006 0.9003 0.9025 0.9010 0.9004 
0.2 0.8034 0.8014 0.8006 0.8044 0.8018 0.8008 
0.3 0.7054 0.7022 0.7010 0.7064 0.7026 0.7012 
0.4 0.6074 0.6030 0.6014 0.6083 0.6034 0.6016 
0.5 0.5093 0.5038 0.5019 0.5103 0.5042 0.5021 
0.6 0.4113 0.4046 0.4023 0.4123 0.4050 0.4025 
0.7 0.3132 0.3054 0.3028 0.3142 0.3058 0.3030 
0.8 0.2152 0.2062 0.2032 0.2162 0.2066 0.2034 
0.9 0.1171 0.1070 0.1036 0.1181 0.1074 0.1038 
1.0 0.0191 0.0077 0.0039 0.0201 0.0081 0.0041 

regenerator. Willmott and Thomas [4] define a long 
regenerator as having a reduced length A greater than 
10 with the A/II ratio greater than 3. For very long 
regenerators the closed methods of Iliffe [5] and 
Nahavandi and Weinstein [6] break down and a 
scheme such as that proposed by Hausen [ 121 can be 
adopted. The Hausen method, as discussed by 
Willmott and Thomas [4], assumes that the spatial 
and chronological variations of the solid temperature 
in the middle of a long regenerator are strictly linear. 
Hausen computes the performance of an equivalent 
shorter regenerator and then extrapolates the results 
calculated to the long regenerator case by exploiting 
this assumption. More recently Baclic [ 131 describes a 
closed solution which applies the Galerkin method to 
the Nusselt [14] equations. In the results reported by 
Baclic, however, the largest A/II ratio considered is 
10, whereas the method presented in this paper can 
deal with A/II ratios of the order 5000. 

Examples of the ability of the present method to 
compute correctly the solution to this problem are 
presented in Tables 557. They show the temperature 
distributions of the solid (Table 5) and fluid (Table 6) 
for values of reduced length up to 500 with a reduced 
period of 0.1. The values of thermal ratio qreg are 

calculated using equation (44) and are presented in 
Table 7. It can be seen that the computed qreg values 
agree, as would be expected, very closely with the ideal 
thermal ratio (when II = 0) for symmetric, counter- 
flow regenerators which is given by A/(A + 2). Even in 
these cases, a value of N = 40 is sufficient to generate 
accurate solutions. 

5. CONCLUSIONS 

The use of the trapezoidal rule to represent equation 
(2) yields a robust, stable solution to the regenerator 

Table 7. Exit fluid temperatures during the cold period for 
symmetric, counter-flow regenerators using N = 40 

Exit fluid temperatures 

9 A=100 A = 250 A=500 

0.000 0.98088 0.99226 0.99611 
0.025 0.98064 0.99216 0.99606 
0.050 0.98039 0.99206 0.99601 
0.075 0.98015 0.99196 0.99596 
0.100 0.97990 0.99186 0.99591 

Average 0.98039 0.99206 0.99601 

A/(A + 2) 0.98039 0.99206 0.99602 
~___- 
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model. From the results it can be seen that the present 

method allows a considerable reduction in the amount 
of computational effort required to calculate accurate 

solutions to the model, when compared with that 
proposed by Razelos [I]. Not only is this significant in 
itself but the range of the dimensionless parameters A 
and II for which the method is applicable is very large 
and includes cases which were previously beyond 

computation. 
Although for long regenerators, with very small 

reduced periods, it is possible to estimate accurately 
the thermal ratio qreg from the ideal thermal ratio given 
above, this ideal is not applicable to larger reduced 
periods. More important, in all cases, it is not possible 
to estimate the spatial and chronological variation of 

solid and fluid temperatures at cyclic equilibrium 
without solving equations (1) and (2). This new closed 

method enables the temperatures to be computed 
directly for cyclic equilibrium without running the 
model through many previous periods of operation. 

Extensions 

For parallel-flow regenerators the reversal 
conditions are given by: 

T,(O) = T,‘(II’) (0 d n d N) 

T,‘(O) = T,(rI) (0 < n d N). 

The application of equations (31t(33) to the above 
reversal conditions results in 2(N + 1) equations in the 

2(N + 1) unknowns Aj, A; from which the Aj, A; values 
can be computed directly. The implementation of this 
scheme has been found to yield a rapid method for 
parallel-flow regenerator calculations. 

One of the important cases considered by Razelos 
[l] is the expression of the inlet fluid temperatures as a 
polynomial of time, i.e. 

fO(V) = 1 ciVi = zO(rl). 
i=O 

Making the substitution 7 = (1 -a)~ in equation (26) 
gives : 

n-1 

R, = exp(aq) 1 (1 -b)“-‘-lb 
r=o 

where 
s n-r 

X evb)ZAr) d7 

and 

z 2 (7) = z,c7/u - 41 
(1-a) 

d’Zo(v) 
z,(v) = a i (- l)iF+bzo(t& 

i=O 

The form of the particular solution in this case is very 
similar to that given by Razelos [ 11. 
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(i) Proof that 
equation (22): 

APPENDIX I 

equation (23) satisfies the auxiliary 

K, = (- l)“A,+exp(uq) 
i 

A.+ C Ajb”-j 
j= 1 

dK 
-=a[K,-(-l)“A,]+a(l+b) 
dv 
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The A,_, term is now extracted from the series: seen that: 

dK 
d9=a[K.-(-l)“A,]+a(l+b) 2=a[K.-(-l)“Ao] 

x exp(an) A,_ 1 + c Ajb”-j-l 1 
i 

n-2 n-j n-j-1 

j=l k=l ( J 

+a(1 +b) (K,-, -(- l)“-‘A,)+exp(q) 1 Ajb’-jml 
k-l i 

n-2 

j= 1 

x(yq?L~. 
xn;g’(“k’r2)(3)“-‘&~ 

Using the binomial relationship dK 
dtl=aK.+aK._,+b a[K,_,-(-I)“-‘A,] 

(:) = (:I:)+(“l’) 
n-Z 

+a(1 +b)exp(an) 1 Ajb”-j-’ 

we obtain: 

dK 
F=a[K.-(--l)“AJ+a(l+b) 

n-2 n-j n-j-2 

i > 
A,_, + 1 Ajb”-j-* 1 

j= 1 x=2 k-2 

,= I 

dK dKnv, 
2= aK,,+aK,_, +b----. 
dv da 

Q.E.D. 

(ii) Proof that equation (26) satisfies the auxiliary 
equation (22): 

n-1 
R, = exp(an) c [a(1 +b)]“-‘-‘b’ 

?=I? 
n-2 a-i-1 n-j-2 

+ 1 Ajb”-j-’ c 
j= L Ir=1 ( > k-l s n-r 

X exP(--a?)Wrl) dv 

XocI)L-‘A}. d,, 
dR, = aR,fexp(aq)“il [a(1 +b)]“-‘-‘b 

n-l 

,=0 ( ! r 

By using the substitution r = k- 1 in the first series it can be 

s 

n-r-, 
X ev( - avKdrl) dv. 

N-l 

N 

N+l 

N+2 

2N 

2N+1 

a;., a’&2 ct’M_, . . . a’, 1 

a’&* a’&, . . , a’, 1 0 

dN_, . . . a’, I 0 

. . . a’, 1 0 

Cl DI c2 . . cd, 1 0 

. a*, 1 0 

a’, 1 0 

1 0 

0 

G-1 %-a s-3 . - . g 1 
a+_2 a+, . . . a, 1 0 

a+, . . . a, 1 0 

. . . a, 1 0 

CJ . . g I 0 C4 D2 
. a, 1 0 

4 1 0 
1 0 

0 

FIG. Al. Matrix M: blank areas in the matrix represent zero values. Note: for symmetric regenerators 
A,+ A; = 0 and only the top or bottom ‘half’ of the matrix need be considered. 

Key 

C, [-(-l)“exp((l-a’)fT’)]r (0 < n < N) 

C, [( - l)N-n exp( -a’lT’)]T (0 < n < IV) 

C, [(-l)N-“exp(-nfI)]T (OGn<N) 

C, [-(-l)“exp((l-a)fi)]T (0 < n < N) 

D, Diagonal matrix, diagonal elements -exp[(l -a’)fJ’] 

D, Diagonal matrix, diagonal elements -exp[(l -a)ff] 
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Using the binomial relationship 

(;> = (“;‘)+(:I:) 

we obtain: 

s 

n-t-r 
x exp( -arl)G&) dq 

n-1 
+,;i [a(1 +b)]n-l-rb’ 

n-,-r 
x exp( -a+&) dtt 

Using the substitution k = r- 1 in the second series we find: 

s 

n-1-r 
x cxp(-a?)G,(q)dq 

n-2 
+b 1 [a(l+b)]“-*-‘b’ 

Ir=0 

s 

n-2-X 
x cxp( - aq)G,(tl) drl 

dR 
2 = aR,+aR,_, 
drl 

n-2 
fb aR,_,+exp(ag) c [a(l+b)]“-2-‘b’ 

Ir=0 

s “-2-k 

x exp(-av)Gdrl)dv 

dR, dR,-, 
-= aR,+aR,_,+b----. 
dtl dtl 

Q.E.D. 

APPENDIX II 

Equations (25), (31)-(42) are implemented in the following 
manner: 

(4 

(b) 

The a,, a; values are calculated from equation (25) using 
(a, b, 1 = II) and (a’, b’, q’ = II’), respectively. 
The system of equations MA = y is then set up using 
equations (37H42). The form of M is given in Fig. Al 
and y is defined below. A is the vector of unknowns 
[A,. . AN, AL.. AbIT. The set of equations can be 
solved using a library routine or the Gauss-Seidel 
iterative scheme--depending on the A/II ratio. In this 
paper the iterative scheme was used for {A/II < 5 and 
II > 1) and the Crout factorisation library routine 
otherwise. 

Define 

T r0 1 2 .._ N N+l N+2 Nf3 2N+l-/ 
ei = 1 lll...l 0 0 0 

ef 

6) 

=[O 0 0 . . . 0 1 1 1 . . . 1 ] 

Then 
y = exp[(l -a’)lT]e, -exp[(l -a)liJe,. 

The temperatures at any time v can now be computed by 
first calculating the a,, j, values from equations (25) and 
(36) and then using equations (31)-(33) (solid) and 
equations (34) and (35) (fluid). 

UNE METHODE ROBUSTE POUR LE CALCUL D’UN ECHANGEUR-REGENERATEUR 

R&n&-On discute une m&ode stable et precise pour la r&solution des tquations diff&entielles d&ivant 
le comportement d’un r&g&n&rateur de chaleur. L’approche adopt& est reli&e B celle propo& par Razelos, 
mais elle emploie la rigle traptzoidale pour foumir la prkision et, en particulier, la stabilitt numkrique. 
Des d&tails de la nouvelle methode sont d&its avec l’application B un large domaine des parambtres 

descriptifs. 

EIN ROBUSTES VERFAHREN ZUR BERECHNUNG VON REGENERATIVEN 
W;IRMEAUSTAUSCHERN 

Zusammenfaasung-Eine stabile und genaue, geschlossene Methode zur Liisung der Differential- 
gleichungen, welche das Verhalten eines thermischen Regenerators beschreiben, wird vorgestellt. Das 
angewandte Verfahren lehnt sich an die Methode von Razelos [ Wiirme- u. Stoffibertr. 12, 59-71 (1979)] 
an; hier wird jedoch die Trapezregel verwendet, urn mehr Genauigkeit und insbesondere mehr numerische 
Stabilitlt zu gewinnen. Die Einzelheiten des neuen Verfahrens werden beschrieben, au&rdem dessen 

Anwendung in einem ‘: eiten Parameterbereich. 

3@@EKTHBHbI$i METOJJ PA’YIETA PETEHEPATHBHbIX TEI-IJIOOSMEHHHKOB 

AtmoraqnerIpeanomeH hteTon non~etiwr ~CTO~~VBBMX c 3anaHHol Towm~~bm perueHG mi++epea- 

~~amsibt~ ypaBHeH&, omic~.~~a~o~wix pexaM pa6oTk.I pereHepaTHBHor0 TetLIIOO6MeHHEKa. MeTomiKa 

pememin aHanorwHa npeAnomeHHok Pauenosoht[k+%rme- Y. Stofibertr.12,594’1(1979)], HO HCIIOJIb- 

3yeTcn ewe @opMyna Tpanewdi nnn 06ecne~emn TOSH-H x,n SacTHocTH, ycrokwinocrsi 4mneHHoro 

pelUeHHK.~aHO nonpo6Hoe O~HCkSHHC hfCTOLla,a TaK)Ke IIOKa3aHO eI-0 UpHMeHeHHe BUIIipOKOMJ@ialIa- 

3OHe3Ha~eHHiiOCHOBHblXIlapaMeTpOB. 


